SiC MOSFET橋式結構的柵極驅動電路
LS(低邊)側SiC MOSFET Turn-on和Turn-off時的VDS和ID的變化方式不同。在探討SiC MOSFET的這種變化對Gate-Source電壓(VGS)帶來的影響時,需要在包括SiC MOSFET的柵極驅動電路的寄生分量在內的等效電路基礎上進行考量。
下圖是最基本的柵極驅動電路和SiC MOSFET的等效電路。
柵極驅動電路中包括柵極信號(VG)、SiC MOSFET內部的柵極線路內阻(RG_INT)、以及SiC MOSFET的封裝的源極電感量(LSOURCE)、柵極電路局部產生的電感量(LTRACE)和外加柵極電阻(RG_INT)。
關于各電壓和電流的極性,需要在等效電路圖中,以柵極電流(IG)和漏極電流(ID)所示的方向為正,以源極引腳為基準來定義VGS和VDS。
SiC MOSFET內部的柵極線路中也存在電感量,但由于它比LTRACE小,因此在此忽略不計。
導通(Turn-on)/關斷( Turn-off)動作
為了理解橋式電路的Turn-on / Turn-off動作,下面對橋式電路中各SiC MOSFET的電壓和電流波形進行詳細說明。我們和等效電路圖結合起來進行說明。
當正的VG被施加給LS側柵極信號以使LS側ON時,Gate-Source間電容(CGS)開始充電,VGS上升,當達到SiC MOSFET的柵極閾值電壓(VGS(th))以上時, LS的ID開始流動,同時從源極流向漏極方向的HS側ID開始減少。這個時間范圍就是T1(見波形圖最下方)。
接下來,當HS側的ID變為零、寄生二極管 Turn-off時,與中間點的電壓(VSW)開始下降的同時,將對HS側的Drain-Source間電容(CDS)及Drain-Gate間電容(CGD)進行充電(波形圖T2)。對該HS側的CDS+CGD充電(LS側放電)完成后,當LS側的VGS達到指定的電壓值,LS側的 Turn-on動作完成。
而Turn-off動作則在LS側VG OFF時開始,LS側的CGS蓄積的電荷開始放電,當達到SiC MOSFET的平臺電壓(進入米勒效應區)時,LS側的VDS開始上升,同時VSW上升。
在這個時間點,大部分負載電流仍在LS側流動(波形圖T4),HS側的寄生二極管還沒有轉流電流。LS側的CDS+CGD充電(HS側為放電)完成時,VSW超過輸入電壓(E),HS側的寄生二極管Turn-on,LS側的ID開始轉向HS側流動(波形圖T5)。
LS側的ID最終變為零,進入死區時間(波形圖T6),當正的VG被印加給HS側MOSFET的柵極信號時Turn-on,進入同步工作時間(波形圖T7)。
在這一系列的開關工作中,HS側和LS側MOSFET的VDS和ID變化導致的各種柵極電流流動,造成了與施加信號VG不同的VGS變化。
關鍵要點:
SiC MOSFET Turn-on時和Turn-off時的VDS和ID的變化方式不同。
在探討這種變化對VGS的影響時,需要在包括SiC MOSFET的柵極驅動電路的寄生分量在內的等效電路的基礎上進行考量。
電話:18923864027(同微信)
QQ:709211280
〈烜芯微/XXW〉專業制造二極管,三極管,MOS管,橋堆等,20年,工廠直銷省20%,上萬家電路電器生產企業選用,專業的工程師幫您穩定好每一批產品,如果您有遇到什么需要幫助解決的,可以直接聯系下方的聯系號碼或加QQ/微信,由我們的銷售經理給您精準的報價以及產品介紹